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ABSTRACT
Object detection in a single image is a challenging problem due
to clutters, occlusions, and a large variety of viewing locations.
This task can benefit from integrating multi-frame information
captured by a moving camera. In this paper, we propose a method
to increment object detection scores extracted frommultiple frames
captured from different viewpoints. For each frame, we run an
efficient end-to-end object detector that outputs object bounding
boxes, each of which is associated with the scores of categories
and poses. The scores of detected objects are then stored in grid
locations in 3D space. After observing multiple frames, the object
scores stored in each grid location are integrated based on the best
object pose hypothesis. This strategy requires the consistency of
object categories and poses among multiple frames, and thus it
significantly suppresses miss detections. The performance of the
proposed method is evaluated on our newly created multi-class
object dataset captured in robot simulation and real environments,
as well as on a public benchmark dataset.
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1 INTRODUCTION
Real-time object detection is fundamental to realizing autonomous
cars and automobile robots. Recent remarkable advances in deep
neural networks enabled fast and highly accurate multi-class ob-
ject detection in images. Although there are also large advances in
3D sensing and processing techniques, using 2D images for object
detection is still promising due to the efficiency and the use of large-
scale data. Object detection in 2D images, however, suffers from the
lack of spatial consistency over multiple frames. Object appearance
in a single image significantly changes due to illumination change,
occlusion, and viewpoint variance. The object detection results
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therefore tend to vary from frame to frame. Assuming that most
objects in a scene are static, it is unlikely that an object in a certain
place suddenly disappears or changes its category or pose. There-
fore, by taking the spatial consistency into account, the reliability
of the detection results can be further improved.

In this paper, we propose a method to integrate object detection
results from multiple frames captured by a moving camera. We
assume that the camera position and the distances between the
camera and objects can be estimated by e.g. a depth sensor, visual
SLAM, or robot odometry. Then we associate the object detection
results from multiple frames according to their estimated 3D lo-
cations. The key idea of our method is to adaptively integrate the
multi-view information of objects based on geometry consistency.
Suppose, for example, that an object is observed from two different
viewpoints, between which the angle is 90◦ in the azimuth plane.
If the object is classified as the front view of a car in an image and
is classified as the side view of a car in the other image, the object
is most likely a car. On the other hand, if the object is classified as
“car” in an image and “bicycle” in the other image, it can be said
that the detection results are unreliable. If the object is classified as
the front view of a car in an image and is classified as the back view
of a car in the other image, the likelihood of the object being a car
should be lower than the first described case, because the estimated
pose of the object is inconsistent. In order to accomplish such a pre-
diction based on geometry consistency, we train viewpoint-aware
object detectors in 2D images. We also present a new method to
utilize the viewpoint-aware object detection results to select the
best candidate among multiple object pose hypotheses.

2 RELATEDWORK
2D object detection using 3D information: In the scenario of
object detection in autonomous driving systems, many works are
based on the combination of object detection in 2D images and
LiDAR or stereo-camera 3D data. In order to extract region propos-
als, the 3D data are converted to voxels [7, 45], depth images [8],
or bird’s-eye view images [9, 24, 38]. The 3D information is then
integrated with 2D networks for object detection. Well-known ob-
ject detectors such as Fast R-CNN [20], Faster R-CNN [36], and
YOLO [35] (or similar alternative networks) are often used in the
pipeline. Regarding the 2D object detection part, most works take a
single RGB image as input to networks, while the main motivation
of our work is to use multi-frame information in order to improve
the performance of 2D object detection.
3D object detection and semanticmapping: Semantic mapping
is one of the most fundamental problems in computer vision. De-
facto standard approaches such as sliding shapes [39] use 3D voxel
data to train 3D object detectors. In the context of semantic map-
ping, object recognition results are often utilized to improve the
performance of structure from motion (SfM) [3, 4, 19], bundle
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Figure 1: Illustration of (a) viewpoint setup, (b) CNN architecture, and (c) object pose candidates.

adjustment [16, 17], and simultaneous localization and mapping
(SLAM) [18, 31, 37, 42]. The main concept of these works is to con-
sider semantic consistency as a constraint of geometry estimation.
Likewise, semantic estimation can benefit from geometry consis-
tency. Pillai et al. [34] proposed “SLAM-aware” object recognition,
where frame-by-frame object detection results are aggregated and
refined using the estimated camera trajectory. This method, how-
ever, does not take the object pose consistency across multiple
frames into account. Bao et al. [5] proposed object co-detection,
which utilizes multiple images to simultaneously detect an object
and find the correspondences among the images. Our work is highly
inspired by those works and use multiple images as well as the view-
point transformation to detect objects by estimating their poses.
Viewpoint estimation in images: In general, object appearance
changes significantly when the viewpoint changes. Viewpoint es-
timation from a single image is widely tackled by training real
images [2, 15, 28, 46, 49], synthetic images [21, 23, 41, 43], and
the combination of them [13]. These methods are classified in
two categories: regression-based methods that predict continu-
ous pose values [15, 21, 46] and classification-based methods that
predict discrete viewpoints [13, 23, 28, 41]. The former approach
is able to estimate precise poses of objects, whereas the latter ap-
proach is more reliable and stable. Some works address the view-
point estimation problem in conjunction with the object detection
task [13, 21, 41, 43, 46]. In particular, Su et al. [41], Xiang et al. [46],
and Divon et al. [13] proposed end-to-end CNN models that jointly
output the category likelihood and viewpoint information of objects
in images. Our work also trains a single CNN model that jointly
estimates object category and viewpoint.
Multi-view object classification: Object classification is known
to be significantly improved by using multi-view images compared
to the case with single image input. Thomas et al. [44] extracted
multi-view correspondences and transfer votes across views for

generic object classification. MVCNN [40] is the first work that
used multi-view images as the input of a CNN to classify 3D ob-
jects. RotationNet [22], which showed the current state-of-the-art
results on a 3D object classification benchmark dataset “Model-
Net” [1], also used multi-view images to jointly estimate object
categories and poses. Multi-view images are used not only for ob-
ject classification but also for semantic segmentation [10] and object
detection [25, 30]. Kumar et al. [25] used hough forest based object
detectors to integrate the detection process across multiple frames
of a short video sequence. More recently, Li et al. [30] proposed a
new framework that uses multi-view images of multiple classes to
train a CNN that infers the 6-DoF pose of an object. Note that the
scope of their work is the pose estimation of multi-class objects,
but it does not include the object classification task. In contrast, our
work tackles multi-class object detection and pose estimation using
multi-view images. Bertasius et al. [6] proposed object detection
for multi-frames using temporal relationships. Whereas their scope
is object detection in videos from fixed cameras, our method aims
object detection using multi-views captured by a moving camera.
Please refer to [48] for a comprehensive review of object detection
in video images captured by a moving camera.

3 METHOD
In this section, we describe the proposed method that trains a CNN
and performs multi-view object detection. The core idea of the pro-
posed method is to estimate the viewpoints as well as the categories
of detected objects and to integrate the object detection scores by
predicting their best poses. Our CNN takes a single image as input
and outputs multiple bounding boxes of objects. When a camera
moves and captures two or more image frames, the detected bound-
ing boxes are incrementally integrated with the bounding boxes
detected in previous frames. The proposed system requires the 3D
locations of a camera and observed objects predicted by a SLAM
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Figure 2: Inference process. Using a depth frame and estimated camera location, each detected box is associated to a 3D location,
which is discretized into 3D grid. Object scores in the same voxel grid are integrated in the manner described in the main text.

technique. In this purpose, we use an RGB-D camera1 equipped to
a mobile robot. The viewpoint setup, our CNN architecture, and
the training and inference processes are described below.

3.1 Viewpoint Setup
Figure 1 (a) shows the viewpoint setup in this work. We assume
the upright orientations of objects are fixed. When an image of
an object is input, we estimate the azimuth and elevation levels
of the discrete viewpoint. The candidate viewpoints are equally
distributed in azimuth and elevation, respectively. Letting𝑀 and
𝑁 be the numbers of viewpoints in elevation and azimuth, the total
number of viewpoints we consider is𝑀𝑁 . Figure 1 (c) shows the
illustration of the candidates of an object pose. We consider the
case where objects are rotated around the gravity vector, and thus
the total number of discrete object poses is 𝑁 .

3.2 CNN Architecture
We train an end-to-end CNN that takes an image as input and out-
puts the bounding boxes of objects with the likelihood of categories
and viewpoints. Each element of the output vector corresponding
to a bounding box represents the likelihood of an object category
observed from a viewpoint. We simply modify the number of the
final output layer of a certain existing object detector. In this work,
we used Faster R-CNN [36] for the base architecture. It is worth
noting that other 2D object detectors such as YOLO [35] can be
used as an alternative. Figure 1 (b) shows our CNN based on the
Faster R-CNN architecture. Letting 𝐾 denote the number of the
target object categories, the dimension of a final output vector is
𝐾𝑀𝑁 + 1, which includes one element that represents the likeli-
hood of background. We train the CNN with cross-entropy loss,
where the elements of an output vector are exclusive. Specifically,
the CNN outputs 𝑝𝑘

𝑖,𝑗
as the likelihood for the 𝑘-th object at 𝑖-th

azimuth level and 𝑗-th elevation level and 𝑝bg as the likelihood for
background, where

∑𝑁
𝑖=1

∑𝑀
𝑗=1

∑𝐾
𝑘=1 𝑝

𝑘
𝑖,𝑗

+𝑝bg = 1. In a preliminary
study, we also tried the geometric loss proposed in [41]. However,
1This could be replaced by mono SLAM because actual depth values are unnecessary
in the proposed method.

we found no meaningful difference in the accuracy, and therefore
we decided to use the above mentioned cross-entropy loss.

3.3 Training
It is a non-trivial task to annotate viewpoints of a large number
of training images with multi-class objects. In a similar manner
to previous works [13, 21, 23, 41, 43], we synthesized training im-
ages with the reconstructed 3D models of target objects. First, we
rendered each object from all the𝑀𝑁 viewpoints using Blender2
software. Then we synthesized up to 5 randomly picked object
images on random background images by using an image synthesis
method [14]. This method smooths the boundaries between objects
and background in the blending step, which has the effect of giving
patch-level reality to the synthetic data. This processing can there-
fore reduce the influence of artifacts generated by a naive synthesis
procedure. In this work, we adopted the Gaussian Blurring, the
Poisson Blending [33], and Motion Blurring as smoothing process-
ings. The scale of an object synthesized in an image was randomly
selected from 0.1 to 1.0. In each training image, two objects are
allowed to overlap with up to 0.75 intersection of union (IoU). The
total number of the synthesized training images is approximately
18,000.

For training a CNNbased on Faster R-CNN,we used the ResNet101
based model pretrained on the PASCAL VOC 2007 detection task.
We fine-tuned it for 100 epochs using momentum SGD with a learn-
ing rate of 0.001 and a momentum of 0.9. The learning rate was
reduced by a factor of 10 after 8 epochs for optimization.

3.4 Inference
The inference process of the proposed method is illustrated in Fig. 2.
Suppose that a camera continuously captures RGB-D images while
moving.We apply our CNN frame by frame to detect objects in color
images. Here, the detection score threshold is set to a low value
in order to reduce false negative results. Using the corresponding
depth image, each detected bounding box is associated to the 3D
location of its center point relative to the camera. Next, we project
2https://www.blender.org

https://www.blender.org
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the 3D locations to the world coordinate using the estimated camera
location, which are then discretized into 3D grid. Each box is also
associated with azimuth and elevation rotations (𝜃 and 𝜙), which
are calculated using the 3D locations of boxes and the camera.
The continuous azimuth and elevation rotation values are then
discretized into 𝑎 (1 ≤ 𝑎 ≤ 𝑁 ) and 𝑒 (1 ≤ 𝑒 ≤ 𝑀). Assuming
that each voxel grid contains a single object, we integrate multiple
bounding box scores associated to the same voxel grid. As already
mentioned, each frame is fed into our CNN to extract the per-frame
object score 𝑝𝑘𝑎,𝑒 which denotes the likelihood that the object in
a certain voxel grid observed from the 𝑎-th azimuth level and the
𝑒-th elevation level belongs to the 𝑘-th object category. We set 𝑝𝑘𝑎,𝑒
to 0 when there is no object bounding box observed from the 𝑎-th
azimuth and the 𝑒-th elevation viewpoint. The problem here in the
inference phase is to estimate the offset of the azimuth level from
that in the training process (see Fig. 1 (c)), which is denoted by 𝑑
(0 ≤ 𝑑 ≤ 𝑁 − 1). The pose of an object observed in the inference
phase can be defined as

𝑓 (𝑎, 𝑑) =
{
𝑎 + 𝑑 (𝑎 + 𝑑 ≤ 𝑁 )
𝑎 + 𝑑 − 𝑁 (otherwise).

(1)

Finally, we compute the integrated likelihood ℎ𝑘 that the object
belongs to the 𝑘-th class as

ℎ𝑘 = max
0≤𝑑≤𝑁−1

𝑀∑
𝑒=1

𝑁∑
𝑎=1

𝑝𝑘
𝑓 (𝑎,𝑑),𝑒 (2)

which is used to determine whether the corresponding bounding
box in the current frame belongs to the 𝑘-th class or not using a
certain threshold. In this way, the optimal category and pose of
the object in each 3D location are jointly estimated. Note that the
integrated likelihood ℎ𝑘 becomes high when multi-view scores
achieve a consensus on a certain 𝑑 value (i.e., pose).

4 ROBOT ENVIRONMENTS DATASET
In this section, we describe our newly created robot environments
dataset3. Our dataset contains multi-view images of multiple ob-
jects for training and RGB-D image sequences in several scenes
for testing, which are associated with (estimated) camera positions.
The scenes were captured in simulation environments as well as
real environments. Unlike an egocentric video dataset containing
hundreds of objects such as EPIC-Kitchens [11, 12], our dataset
contains a small variety of objects which are however densely an-
notated with pose information. It also has the advantage of pairing
simulation data and real data for respective objects.

Our dataset consists of 17 target objects, whose names are shown
in the first column of Table 1. We tested two sets of viewpoint pa-
rameters: {𝑀, 𝑁 } = {3, 16} and {𝑀, 𝑁 } = {3, 8}. In both cases,
the elevation is divided into 10, 30, and 50 degrees from the hori-
zontal. For 48 viewpoint, the azimuth is divided into 16 divisions
in 22.5 degree increments. For 24 viewpoint, the azimuth is di-
vided into 8 divisions in 45 degree increments. The background
images used to synthesize the training dataset were captured by
moving a real/simulated robot. In these experiments, we used the
Toyota Human Support Robot (HSR) [47] as a hardware platform.

3The dataset is publicly available on https://www.ak.c.titech.ac.jp/projects/IMOD/

For the test data, a total of 300 RGB-D images were created in the
simulation environment, and a total of 2,113 RGB-D images were
created in the real environment, where the camera positions esti-
mated by odometry of HSR for all the frames are included. As a
simulation environment, we used four worlds simulating a house
environment created on Gazebo4 and a 3D model of HSR. As a real
environment, we prepared three real environments similar to the
simulation environment. Note that “spoon_iron” does not appear
in real environment dataset because it was lost in that period.

5 RESULTS
In this section, we evaluate the proposed method on our dataset
(Sec. 5.1) and RGB-D object dataset [27] (Sec. 5.2). A comparative
evaluation of single-view detection (baseline) and multi-view de-
tection (proposed) was performed. As a single-view evaluation, in
addition to our base CNN model (“w/ viewpoint”), we also trained
a model that classifies only object categories and does not classify
viewpoints (“w/o viewpoint”). As a multi-view evaluation, in addi-
tion to the proposed method, we evaluated a method that simply
sums the scores of multi-frame detections (“Naive”), which was also
used in [34]. For the RGB-D object dataset, we also comparad the
proposed method with several previous works [26, 29, 34] which
used multi-view images for object detection. We used the Average
Precision (AP) at IoU of 0.5 to evaluate the performance of object
detection. We apply non-maximum suppression (NMS) on detected
bounding boxes per category, where we set the IoU threshold to
0.7.

5.1 Results on our robot environments dataset
We describe the experimental results on our new multi-class object
datasets.

Columns 2-9 in Table 1 show the AP in simulation environments
whereas columns 10-17 show the AP in real environments. In the
single-view setting, “w/o view” and “w/ view” performed compara-
bly. The naive method in the multi-view setting is outperformed
by the single-view performance. In this dataset, since the robot ap-
proaches objects from a distance, the detection accuracy becomes
higher in later frames. In the naive method, since the detection
scores are simply summed up, we consider that the false detection
results in early frames affected the subsequent frames. The pro-
posed method outperformed both the single-view object detection
and the naive method in most classes. The possible reason for the
performance decrease in some classes is that they are symmetric,
and thus the proposed approach based on pose estimation was not
fully effective. Figure 3 shows the qualitative results in our robot
simulation and real environments dataset. The proposed multi-view
based object detection tends to have fewer false positive detections
than the single-view based method.

5.2 Results on RGB-D Object Dataset [27]
In this section, we describe the experimental results on RGB-D
object dataset [27], which is a well-known public benchmark dataset
of multi-view object images. We compare the detection results of
the proposed methods with existing methods [26, 29, 34] using
multi-view images. The RGB-D object dataset contains the images
4http://gazebosim.org

http://gazebosim.org
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Table 1: Comparison of Average Precision (AP) with the single-view based approach (baseline) and the multi-view based ap-
proach (proposed) for our robot simulation and real environments dataset.

Robot Simulation Environments Dataset Real Environments Dataset

𝑀 = 3, 𝑁 = 16 𝑀 = 3, 𝑁 = 8 𝑀 = 3, 𝑁 = 16 𝑀 = 3, 𝑁 = 8

Single-View Multi-View Single-View Multi-View Single-View Multi-View Single-View Multi-View

Object Classes w/o view w/ view Naive Ours w/o view w/ view Naive Ours w/o view w/ view Naive Ours w/o view w/ view Naive Ours

ball_pink 0.907 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.631 0.711 0.459 0.592 0.718 0.499 0.526 0.548
building_block_house 0.909 0.723 0.906 0.778 0.906 0.862 0.906 0.903 0.907 0.900 0.696 0.843 0.816 0.815 0.759 0.926
cellphone 0.872 0.740 0.996 0.870 0.996 0.894 0.961 1.000 0.522 0.393 0.414 0.640 0.540 0.417 0.545 0.652
gorilla_doll 0.909 0.894 0.906 0.909 0.961 0.877 0.727 0.903 0.499 0.487 0.744 0.716 0.373 0.485 0.622 0.729
kidney_beans_doll 0.495 0.724 0.859 0.958 0.424 0.621 0.602 0.909 0.534 0.515 0.456 0.699 0.442 0.409 0.555 0.627
lego_green 0.887 0.622 0.412 0.761 0.818 0.812 0.633 0.808 0.628 0.536 0.541 0.726 0.527 0.528 0.544 0.585
lego_red 0.808 0.755 0.909 0.878 0.818 0.804 0.904 0.876 0.813 0.795 0.664 0.863 0.815 0.696 0.651 0.817
mouse_doll 0.456 0.689 0.434 0.805 0.425 0.651 0.264 0.821 0.369 0.451 0.374 0.579 0.346 0.480 0.476 0.596
plastic_cup_yellow 0.727 0.725 0.727 0.751 0.687 0.722 0.630 0.781 0.907 0.892 0.651 0.778 0.907 0.782 0.544 0.676
rail_bridge 0.818 0.818 0.818 0.831 0.871 0.889 0.909 0.909 0.816 0.800 0.834 0.852 0.726 0.708 0.741 0.789
rice_bowl 0.883 0.896 0.764 0.882 0.810 0.892 0.674 0.850 0.909 0.893 0.835 0.991 0.908 0.906 0.754 0.923
spoon_iron 0.622 0.671 0.625 0.741 0.687 0.623 0.701 0.681 - - - - - - - -
square_bowl 0.907 0.863 0.816 0.900 0.904 0.857 0.693 0.904 0.908 0.889 0.845 0.889 0.907 0.895 0.736 0.836
square_dish 0.902 0.849 0.771 0.830 0.868 0.904 0.859 0.863 0.538 0.444 0.652 0.787 0.263 0.196 0.566 0.477
steel_juice 0.720 0.695 0.455 0.723 0.818 0.811 0.273 0.834 0.387 0.383 0.459 0.630 0.368 0.302 0.518 0.642
teacup 0.906 0.801 0.894 0.909 0.909 0.886 0.909 0.909 0.904 0.756 0.452 0.695 0.906 0.691 0.587 0.632
wood_coaster 0.273 0.329 0.358 0.541 0.482 0.501 0.273 0.545 0.635 0.486 0.754 0.871 0.545 0.530 0.755 0.830

mean 0.765 0.747 0.739 0.822 0.782 0.795 0.696 0.847 0.682 0.646 0.614 0.759 0.632 0.584 0.617 0.705

Table 2: Comparison of Precision/Recall (AP) with the single-view based and multi-view based approaches on RGB-D Object
Dataset [27].

Single-View Multi-View

Object w/o viewpoint w/ viewpoint DetOnly [29] SLAM-aware [34] Naive Ours Det3DMRF [29] HMP2D+3D [26] SLAM-aware [34]

bowl 96.3/65.8 (0.631) 92.5/61.0 (0.606) 46.9/90.7 (-) 88.6/71.6 (-) 94.6/66.0 (0.613) 97.0/68.1 (0.709) 91.5/85.1 (-) 97.0/89.1 (-) 88.7/70.2 (-)
cap 84.4/69.1 (0.626) 88.0/61.9 (0.599) 54.1/90.5 (-) 85.2/62.0 (-) 82.2/69.2 (0.564) 90.1/69.2 (0.689) 90.5/91.4 (-) 82.7/99.0 (-) 99.4/72.0 (-)
cereal_box 94.3/74.4 (0.724) 93.3/71.3 (0.709) 76.1/90.7 (-) 83.8/75.4 (-) 92.4/76.0 (0.711) 94.9/76.1 (0.802) 93.6/94.9 (-) 96.2/99.3 (-) 95.6/84.3 (-)
coffee_mug 93.0/79.0 (0.721) 83.2/80.6 (0.719) 42.7/74.1 (-) 70.8/50.8 (-) 91.1/79.4 (0.775) 93.9/79.4 (0.795) 90.0/75.1 (-) 81.0/92.6 (-) 80.1/64.1 (-)
soda_can 96.8/65.4 (0.631) 96.0/66.5 (0.627) 51.6/87.4 (-) 78.3/42.0 (-) 93.4/66.7 (0.612) 97.8/72.3 (0.723) 81.5/87.4 (-) 97.7/98.0 (-) 89.1/75.6 (-)
background 90.8/96.5 (-) 90.4/95.2 (-) 98.8/93.9 (-) 95.0/90.0 (-) 89.6/96.8 (-) 91.6/97.1 (-) 99.0/99.1 (-) 95.8/95.0 (-) 96.6/96.8 (-)

mean 92.6/75.0 (0.667) 90.6/72.8 (0.652) 61.7/87.9 (-) 81.5/59.4 (-) 90.55/75.68 (0.655) 94.2/77.0 (0.744) 91.0/88.8 (-) 90.9/95.6 (-) 89.8/72.0 (-)

of 300 objects in 51 categories taken from multiple viewpoints. In
order to maintain a fair comparison, we used five objects shown
in the first column of Table 2 for evaluation as in [26, 29, 34]. We
divided the azimuth into 12 divisions in 30 degree increments and
the elevation into 3 divisions in 30, 45, and 60 degrees with the
horizon for a total of 36 viewpoints. The RGB-D object dataset
also contains the RGB-D scenes dataset, which consists of eight
video sequences (1,437 frames) of a house environments. As in [34],
we estimated the 3D position of the camera in each frame using
ORB-SLAM2 [32].

Table 2 shows the precision/recall values and the AP for the
object detection task. For the AP, interestingly, even though the
single-view detection model that estimates both category and view-
point was inferior to the one w/o viewpoint, the results were over-
thrown when multiple frames were used. The naive method does
not effectively utilize multi-view information for the same reason
as described in Sec. 5.1. Point-wise precision/recall values are re-
ported for [29] and [26], whereas those for 2D object detection
per frame are reported for [34] and the proposed method. The
score threshold for each class was tuned by increasing it with the
step size of 0.01. The precision/recall of the background class was
computed per pixel by regarding all the pixels in detected bound-
ing boxes as foreground and all the other pixels as background.

The proposed method outperformed the single-view methods and
SLAM-aware [34] using multi-view images in most classes. The
proposed method has higher precision but slightly lower recall
than Det3DMRF [29] and HMP2D+3D [26], both of which require
3D point clouds (i.e., more information than 2D images). Figure 4
shows the qualitative results. Similarly to the results on our dataset
described in Sec. 5.1, the proposed multi-view based object detec-
tion has fewer false positive detections as well as more true positive
detections than the single-view based method.

6 CONCLUSION
In this paper, we presented a new framework that integrates multi-
frame information to improve multi-class object detection perfor-
mance. Using the depth and the camera location information, the
bounding boxes detected in 2D images are associated with the 3D
locations. Our system incrementally refines the object detection re-
sults by integrating the scores extracted from multi-view images in
each 3D location. The key idea of the proposed method is to predict
the pose of an object when integrating the object detection scores.
Owing to the geometry constraint underlying in multiple frames,
our system can appropriately increase the scores of plausible results
as well as suppress miss detections. Experimental results both in ro-
bot simulation environments and real environments demonstrated
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(a) Robot Simulation Environments Dataset
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(b) Real Environments Dataset
Figure 3: Qualitative results on our dataset. True positives are shown in green boxes and false positives are shown in red boxes.
The estimated class name is displayed above each bounding box. Best viewed in color.
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Figure 4: Qualitative results for RGB-D Object Dataset [27]. True positives are shown in green boxes and false positives are
shown in red boxes. The estimated class name is displayed above each bounding box. Best viewed in color.

that the proposed method outperformed frame-by-frame object
detection. Also, we showed that the proposed method achieved
higher precision than several previous works on multi-view object
detection on a public benchmark dataset.
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